Emission from the Excited State of Tetraneopentyldisilene

Haruo Shizuka,*a Hideaki Tanaka,a Katsuhiko Okazaki,a Motohiko Kato,a Hamao Watanabe,a Yoichiro Nagai,a **and Mitsuo lshikawab**

^a*Department of Chemistry, Gunma University, Kiryu, Gunma 376, Japan*

^b*Department of Synthetic Chemistry, Kyoto University, Kyoto 606, Japan*

Fluorescence from tetraneopentyldisilene containing only a silicon-silicon double bond as chromophore is observed with a large Stokes **shift** (7300 cm-1) in methylcyclohexane-isopentane glass at 77 **K.**

Recently, the emission properties of aromatic disilanes have been extensively studied. Dual [local and charge-transfer (C.T.)] emissions of aromatic disilanes have been observed and it has been found that the intramolecular C.T. fluorescence has a broad and structureless band with a large Stokes shift.^{1,2} The C.T. emission originates from the $1(2p\pi,3d\pi)$ state produced by the $2p\pi^*$ (aromatic ring) \rightarrow vacant $3d\pi$ (Si-Si single bond) intramolecular charge transfer *.3-5* The C.T. state has a strongly polar structure with complete charge separation,^{3,4} which plays an important role in the photochemical and photophysical properties of aromatic disilanes.6 It has been shown very recently that the intramolecular C.T. process occurs very rapidly $(<10$ ps) both in a nonpolar solvent at 293 K and in a polar rigid matrix at 77 K and that at room temperature a long-lived 425 nm transient (which is assigned to a rearranged intermediate) is produced with a rise time of 30 ps, showing that the transient arises from the C.T. state.7 With regard to the unsaturated disilene systems West *et al.* **8** have reported the fluorescence spectrum of tetramesityldisilene, but no fluorescence lifetimes and no information on the phosphorescence emission have been reported.

During our studies on the excited-state chemistry of organosilicon compounds, we were interested in the emission of tetraneopentyldisilene, which contains only a silicon-silicon double bond as a chromophore. Disilenes⁸⁻¹⁰ having aryl substituents are not always convenient for assessing the electronic properties of silicon-silicon double bonded frameworks, since the aryl substituent will cause perturbations.

We report here the emission of tetraneopentyldisilene **(2)** with an extremely large Stokes shift (7300 cm⁻¹) at 77 K.[†] It is known that **(2)** with an absorption peak at 400 nm is produced photochemically from hexaneopentylcyclotrisilane **(1)** at room temperature as shown in equation (1) .¹¹ The fluorescence $(\lambda_{\text{max}} 325 \text{ nm})$ and phosphorescence $(\lambda_{\text{max}} 454 \text{ nm})$ spectra of **(1)** were recorded in a methylcyclohexaneisopentane (MP; $3:1 \text{ v/v}$) glass at 77 K [see Figure 1(a)]. These

t The emission spectra were recorded with a Hitachi M850 spectrofluorimeter and spectral corrections were made. The fluorescence lifetime was measured with a single-photon counting apparatus (Horiba **NAES-1100,** pulse width 2 nm). All samples were degassed by means of freeze-pump-thaw cycles on a high vacuum line.

Figure 1. (a) Absorption (Abs.), fluorescence (Fluo.), and phosphorescence (Phos.) spectra of (1) (4.8 \times 10⁻⁵ mol dm⁻³) in MP glass at 77 K. (b) Absorption spectrum (Abs.) obtained on photolysis of (1) $(9.8 \times 10^{-3} \text{ mol dm}^{-3})$ in MP at 254 nm at room temperature, fluorescence spectrum (Fluo.), excitation at 420 nm, and excitation spectrum (Exc.) monitored at 600 nm, of **(2)** in MP glass at 77 K.

are ascribed to the $\sigma^* \rightarrow \sigma$ emissions. The fluorescence decay of (1) comprised two components $(4 \text{ ns } 89\%; 47 \text{ ns } 11\%)$. This may correspond to two components of stereoisomers of **(1)** at low temperatures.¹² The phosphorescence lifetime of (1) was 1.7 ms. After irradiation of **(1)** in **MP** at 254 nm for 11 h at room temperature, the yellow species **(2)** was produced with other photoproduct(s) as shown in Figure $1(b)$ and equation **(1).** The irradiated solution was cooled to 77 K. For **(2),** the fluorescence spectrum (excited at 420 nm) with a peak at 565 nm was observed in MP glass at 77 K. The excitation spectrum (monitored at 600 nm) with a peak at 400 nm shows that the π^* $\rightarrow \pi$ fluorescence at 565 nm originates from (2). The Stokes

Figure 2. (a) Absorption (Abs.), fluorescence (Fluo.), and phosphorescence (Phos.) spectra of **(3)** $(3.1 \times 10^{-5} \text{ mol dm}^{-3})$ in MP glass at 77 K. **(b)** Absorption spectrum (Abs.) obtained on photolysis of **(3)** $(1 \times 10^{-2} \text{ mol dm}^{-3})$ in MP at 200 K and fluorescence spectrum (Fluo.), excitation at 440 nm, of *(5)* in MP glass at 77 K.

shift for (2) is very large (7300 cm^{-1}) compared to that (4430 cm^{-1}) cm^{-1} ^{\uparrow} of tetramesityldisilene (see Figure 2). It is unlikely that the emission of **(2)** with a large Stokes shift arises from an intramolecular C.T. state such as the $(2p\pi,3d\pi)$ C.T. state of phenyldisilane as described above, since **(2)** has only a Si=Si chromophore. The large Stokes shift may be ascribed to a large Franck-Condon destabilization energy in the disilenes, especially for (2). The length of the Si=Si bond in the lowest excited singlet (S_1) state is, therefore, greater than that in the ground state. The $\pi-\pi$ ^{*} 0–0 transition energy in (2) is determined to be 21 350 cm⁻¹ from the absorption (400 nm) and fluorescence (565 nm) band maxima, which is markedly smaller than that $(57336 \text{ cm}^{-1})^{13}$ in ethylene. These results show that $Si=Si$ 3p π bond is much weaker than the $C=C$ 2p π band as has been suggested by West *et al.*⁸ The fluorescence lifetime of **(2)** (excitation at 420 nm) was determined to be 27 **ns** in MP glass at 77 K. No phosphorescence of **(2)** at 77 K could be observed in the wavelength range <800 nm. It thus seems that the phosphorescence of the disilenes may appear in the region >800 nm. If this is not the case, the lack of observation of the phosphorescence may be due to either a relatively slow intersystem crossing compared to other deactivation processes in the S_1 state or a relatively small radiative rate constant in the triplet state of **(2).**

Tetramesityldisilene *(5)* with an absorption peak at 420 nm was produced by the photolysis of 2,2-dimesitylhexamethyltrisilane **(3)s** at 200 K as shown in equation (2) and Figure 2(b). The fluorescence (λ_{max}) 298 nm; lifetime 15 ns) and phosphorescence (λ_{max} , 393 nm; lifetime 1.8 ms) spectra of **(3)** were recorded and are shown in Figure 2(a). The fluorescence spectrum $(\lambda_{\text{max}} 516 \text{ nm})$ of (5) in MP glass at 77 K **is** shown in Figure 2(b). The Stokes shift is determined to be 4430 cm⁻¹, \ddagger which is significantly smaller than that (7300) cm-l) of **(2)** having only the Si=Si chromophore. It is obvious that the marked difference between them is caused by the perturbation of the mesityl group(s) in *(5).* The spectral differences between **(2)** and *(5)* are not due to the other products in equation (1), since the irradiation time $(7-17 h)$

 \ddagger West *et al.8* reported that the value of Stokes shift for the fluorescence of (5) was 4000 cm⁻¹.

for the photolysis of **(1)** at 254 nm had no effect on the fluorescence spectrum and lifetime of (2). These results indicate that the strength of Si=Si bond in the S_1 state of (2) is weaker than that of *(5).* The fluorescence lifetime of *(5)* was 15 **ns** in MP glass at 77 **K.** No phosphorescence of *(5)* could be observed at 77 K in the wavelength range ≤ 800 nm.

At room temperature, emission from **(2)** or **(5)** could not be observed. This is due to fast radiationless decay processes in the S_1 state of the disilenes; photochemical isomerization may occur in fluid media.14

Received, 14th January 1986; Corn. 069

References

- 1 H. Shizuka, H. Obuchi, M. Ishikawa, and K. Kumada, J. *Chem.* **SOC.,** *Chem. Commun.,* **1981, 405.**
- **2** M. Ishikawa, H. Sugisawa, T. Fuchikami, M. Kumada, T. Yamabe, H. Kawakami, K. Fukui, Y. Ueki, and H. Shizuka, J. *Am. Chem. SOC.,* **1982, 104, 2872.**
- **3** H. Shizuka, **Y.** Sato, **M.** Ishikawa, and M. Kumada, J. *Chem. Soc., Chem. Commun.,* **1982,439.**
- **4** H. Shizuka, **Y.** Sato, Y. Ueki, M. Ishikawa, and M. Kumada, *J. Chem.* **SOC.,** *Faraday Trans. I,* **1984, 80, 341.**
- *5* H. Hiratsuka, Y. Mori, M. Ishikawa, K. Okazaki, and H. Shizuka, **J.** *Chem. SOC., Faraday Trans.,* **2, 1985,81, 1665.**
- **6** H. Shizuka, H. Obuchi, M. Ishikawa, and M. Kumada, J. *Chem. SOC., Faraday Trans. 1,* **1984, 80, 383.**
- **7** H. Shizuka, **K.** Okazaki, M. Tanaka, M. Ishikawa, M. Sumitani, and K. Yoshihara, *Chem. Phys. Lett.,* **1985, 113, 89.**
- **8** R. West, M. J. Fink, and J. Michl, *Science,* **1981, 214, 1343.**
- **9** P. Boudjouk, B.-H. Han, and K. R. Anderson, J. *Am. Chem. SOC.,* **1982, 104, 4992.**
- 10 **S.** Masamune, Y. Hanzawa, **S.** Murakami, T. Bally, and J. F. Blount, J. *Am. Chem.* **SOC., 1982, 104, 1150.**
- **11** H. Watanabe, T. Okawa, M. Kato, and Y. Nagai, J. *Chem. Sac., Chem. Commun.,* **1983, 781.**
- **12** H. Watanabe, M. Kato, T. Okawa, Y. Nagai, and M. Goto, J. *Organomet. Chem.,* **1984,271,225.**
- **13** G. Herzberg, 'Electronic Spectra and Electronic Structure of Polyatomic Molecules,' Van Nostrand, Princeton, NJ, **1967,** p. **629.**
- **14** M. J. Michalczyk, R. West, and J. Michl, J. *Am. Chem. SOC.,* **1984, 106, 821.**